© 2024 All Rights Reserved

Recent achievements in the THz super-resolution endoscopy and tunable optical element designing

G. M. Katyba1,2, A.S. Kucheryavenko1,2, V.A. Zhelnov1,2, M.G. Burdanova1,3, N. I. Raginov4, D.V. Krasnikov4, A. G. Nasibulin4, A. V. Arsenin 3, V. S. Volkov 3, K. I. Zaytsev2, and V. N. Kurlov1
1- Institute of Solid State Physics of RAS, 2 Academician Osipyan str., Chernogolovka, 142432 Russia
2- Prokhorov General Physics Institute of RAS, 38 Vaviliva str., Moscow, 119991, Russia
3 - Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny, 141701, Russia
4 - Skolkovo Institute of Science and Technology, 3 Nobel str., Moscow, 121205, Russia


Over the recent years, we have introduced a range of materials for the design of THz (terahertz) optical elements. These materials include sapphire-shaped crystals, which possess desirable attributes for low-loss THz wave delivery and single-walled carbon nanotube with high conductivity.

We have explored the utility of using waveguides, fibers, and fiber bundles based on these sapphire-shaped crystals. Such structures are suitable for tasks involving the efficient transmission of radiation with minimal loss and for applications in superresolution imaging [1-3]. In a recent development, we have successfully designed hollow-core THz waveguides that incorporate polymer cladding. These waveguides serve to manipulate the angular distribution of a two-color laser-generated air plasma emitter [4]. Furthermore, by integrating these waveguides with sapphire solid immersion lenses, we have made advancements in the creation of an endoscopic system [5]. This system demonstrates a spatial resolution of approximately 0.19 times the wavelength (λ).

The new approach for the creation of mechanically tunable focusing element in the THz range could be presented. Single-walled carbon nanotube (SWCNT) thin film was transferd on the stretchable polymer and 50% change in focus length was archved [6].

This work was supported by the Russian Science Foundation (RSF), research project # 22-72-10033.

[1]G. M. Katyba, K. I. Zaytsev, I. N. Dolganova, N. V. Chernomyrdin, V. E. Ulitko, S. N. Rossolenko, I. A. Shikunova, V. N. Kurlov, Sapphire waveguides and fibers for terahertz applications, Progress in Crystal Growth & Characterization of Materials 67(3), 100523 (2021).
[2]I. V. Minin, O. V. Minin, G. M. Katyba, N. V. Chernomyrdin, V. N. Kurlov, K. I. Zaytsev, L. Yue, Z. Wang, D. N. Christodoulides, Experimental observation of a photonic hook Applied Physics Letters, 114, 031105 (2019).
[3]G. M. Katyba, M. Skorobogatiy, D. G. Melikyants, N. V. Chernomyrdin, A. N. Perov, E. V. Yakovlev, I. N. Dolganova, I. E. Spektor, V. V. Tuchin, V. N. Kurlov, K. I.. Zaytsev, Superresolution Imaging Using a Tapered Bundle of High-Refractive-Index Optical Fibers, Physical Review Applied, 18(3), 34069 (2022).
[4]G. M. Katyba, P. A. Chizhov, V. N. Kurlov, I. N. Dolganova, S. V. Garnov, K. I. Zaytsev, V. V. Bukin, THz generation by two-color laser air plasma coupled to antiresonance hollow-core sapphire waveguides: THz-wave delivery and angular distribution management, Optics Express, 30(3), 4215-4230 (2022).
[5]A. S. Kucheryavenko, V. A. Zhelnov, D. G. Melikyants, N. V. Chernomyrdin, S. P. Lebedev, V. V. Bukin, S. V. Garnov, V. N. Kurlov, K. I. Zaytsev, G. M. Katyba, Super-resolution THz endoscope based on a hollow-core sapphire waveguide and a solid immersion lens, Optics Express, 31(8), 13366-13373 (2023).
[6] G.M. Katyba, N.I. Raginov, E.M. Khabushev, V.A. Zhelnov, A.Gorodetsky, D.A. Ghazaryan, M.S. Mironov, D.V. Krasnikov, Y.G. Gladush, J. Lloyd-Hughes, A.G. Nasibulin, A.V. Arsenin, V.S. Volkov, K.I. Zaytsev, M.G. Burdanova, Tunable THz flat zone plate based on stretchable single-walled carbon nanotube thin film, Optica 10(1), 53-61 (2023).

File with abstract


Katyba Gleb
Institute of Solid State Physics of RAS, 2 Academician Osipyan str., Chernogolovka, 142432


Ask question