SFM'21

Terahertz axicone made of nanoporous SiO₂

V.E. Ulitko^{1,*}, G.M. Katyba^{1,2}, G.A. Komandin², I.E. Spector², G.A. Emelchenko¹, V.N. Kurlov¹, V.M. Masalov¹, K.I. Zaytsev^{2,3,4}.

¹Institute of Solid State Physics of RAS, Russia ²Prokhorov General Physics Institute of RAS, Russia ³Institute for Regenerative Medicine, Sechenov University, Russia ⁴Bauman Moscow State Technical University, Russia *E-mail: <u>ulitko.vl@gmail.com</u>

We have shown in the previous articles [1,2], that nanoporous SiO₂, namely, artificial opals, are promising terahertz (THz) optical materials with no dispersion in the frequency range 0.1-2.5 THz, low absorption and quite a unique ability to vary the effective refractive index in a wide range (1.6-1.95) only by annealing. In this work, we fabricate THz axicone by direct sedimentation of the opal colloidal suspension into a mold. The axicone was dried and annealed in order to achieve higher refractive index. Next, we study fabricated axicone using a homemade THz imaging setup. Experimental results were compared with theoretical considerations. Obtained results show that artificial opals have a great potential for THz applications.

This work was partially supported by the Russian Science Foundation (RSF), Project # 22-72-10033.

[1] Ulitko, V.E. et. al. *Nanoporous SiO₂ based on annealed artificial opals as a favorable material platform of terahertz optics*, Optical Materials Express, **10**(9), 2100, 2020. DOI:10.1364/OME.402185;

[2] Ulitko, V.E. et. al. *Opal-based terahertz optical elements fabricated by self-assembly of porous* SiO₂ nanoparticles, Optics Express **29**(9), 13764, 2021. DOI:10.1364/OE.422637.