UCOUSIPS!

SAMARA UNIVERSITY

The optical vortices structure controlling by changing the height of silicon ring gratings using high-performance computer systems

Dmitry A. Savelyev
Associate Professor
Department of Technical Cybernetics
Samara National Research University
Image Processing Systems Institute of RAS - Branch of the
FSRC "Crystallography and Photonics" RAS
Samara, Russia

- DOE is designed to form the required distribution of the electromagnetic field.
- The main difficulty in the synthesis of DOEs is the solution of the inverse diffraction problem.
- Examples: Fresnel lens, diffraction gratings, interference holograms, synthesized diffraction relief, metasurfaces, depicting and non-depicting DOE.

Khonina, S. N., Karpeev, S. V., Alferov, S. V., Savelyev, D. A., Laukkanen, J., \& Turunen, J. (2013). Experimental demonstration of the generation of the longitudinal E-field component on th - ~ntical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. Journal of Optics, 15(8), 085704.

RING GRATINGS AND INPUT BEAMS

- The wavelength $\lambda=1.55 \mu \mathrm{~m}$.
- The size of the computational domain x, y, z in $[-5.7 \lambda ; 5.7 \lambda]$.
- The thickness of the absorbing layer PML $\sim \lambda$,
- The sampling step of space $-\lambda / 30$, the sampling step of time $-\lambda /(60 \mathrm{c})$, where c is the light velocity.
- The Laguerre-Gauss mode (1,0) (optical vortex) with different beam width was considered as input laser beams.
- Circular polarization (the sign of circular polarization is opposite to the sign of the introduced vortex phase singularity).
- The numerical aperture (NA) of the focusing binary axicon was 0.95 (grating period 1,05 1).
- The refractive index of the optical element is $\mathbf{n}=\mathbf{3 . 4 7}$.
- The height of the relief of the annular grating changed from 0.2λ to 4λ.
- Diffraction modeling (3D) was performed using the finite difference time domain (FDTD) method.
- For calculations used a free-software package Meep.
- The calculations were carried out on computing cluster with a 950 GFlop power.

General characteristics:

- The total number of processors / cores: 360/1992;
- Total number of graphics processors / cores: 5/4216;
- Total Memory: 6672 GB;
- System network: QLogic / Voltaire InfiniBand DDR, QDR;
- Type of control support network: Gigabit Ethernet;

- Operating system: Red Hat Enterprise Linux.

The computing part includes:

- 112 BladeCenter HS22 blade server computing with 2x Intel Xeon X5560;
- 28 HS23 blade servers with $2 x$ Intel Xeon E5-2665;
- 14 HS23 blade servers with 2x Intel Xeon E5-2680v2;
- 14 HS22 blade servers with 24 GB of memory on the server with $2 x$ Intel Xeon X5670;
- 8 HS22 blade servers with 96 GB memory on the server with $2 x$ Intel Xeon X5670;
- 2 HS22 blade servers with graphics cards Nvidia Tesla 2070;
- SMP server, CPU - 4x Intel Xeon E7-4860, GPGPU - Nvidia Tesla K20c.

- Etc...

LASER RADIATION PROPAGATION THROUGH SILICON AXICONS FROM $\underline{h=0.2 \lambda}$

$$
h=\frac{\pi}{k(n-1)}=0.202429 \lambda \approx 0.2 \lambda, \text { where } k=2 \pi / \lambda \text { is wave number, }
$$

The total intensity
λ is wavelength of laser radiation, and n is refractive index.

The relief height corresponded to the phase jump π radians.

FWHM $=0.5 \lambda$, DOF $=1.92 \lambda$

$\mathrm{FWHM}=0.57 \lambda, \mathrm{DOF}=2.53 \lambda$
FWHM $=0.44 \lambda$, DOF $=2.53 \lambda$

The intensity of the longitudinal component

FWHM $=0.44 \lambda$, DOF $=1.92 \lambda$

LASER RADIATION PROPAGATION THROUGH SILICON AXICONS

FROM $h=0.5 \lambda$ TO $h=4 \lambda$, TOTAL INTENSITY

LASER RADIATION PROPAGATION THROUGH SILICON AXICONS

 FROM $h=0,5 \lambda$ TO $h=4 \lambda$, INTENSITY OF THE LONGITUDINAL COMPONENT

LASER RADIATION PROPAGATION THROUGH SILICON RING GRATINGS

FROM $h=0,5 \lambda$ TO $h=4 \lambda$, TOTAL INTENSITY

FWHM $=0.84 \lambda$, DOF $=1.88 \lambda$
(f)

$F W H M=0.86 \lambda$, DOF $=1.73 \lambda$

FWHM $=1.49 \lambda$, DOF $=1.93 \lambda$
(g)

$F W H M=0.72 \lambda, \underline{\mathrm{DOF}}=2.97 \lambda$
$\mathrm{h}=2 \lambda$
(c)

FWHM $=0.73 \lambda$, DOF $=0.75 \lambda$
(h)

FWHM $=0.59 \lambda$, DOF $=1.83 \lambda$
$\mathrm{h}=3 \lambda$
(d)

FWHM $=0.6 \lambda$, DOF $=1.32 \lambda$
(i)

FWHM $=0.65 \lambda, \underline{\text { DOF }}=4.65 \lambda$

$$
\mathrm{h}=4 \lambda
$$

(e)

FWHM $=0.56 \lambda$, DOF $=0.86 \lambda$
(j)

FWHM $=0.6 \lambda$, DOF $=1.08 \lambda$

LASER RADIATION PROPAGATION THROUGH SILICON RING GRATINGS FROM $h=0,5 \lambda$ TO $h=4 \lambda$, INTENSITY OF THE LONGITUDINAL COMPONENT

$h=0.5 \lambda$
(a)

$\mathrm{FWHMz}=0.45 \lambda, \mathrm{DOFz}=1.86 \lambda$
(f)

$\underline{\mathrm{FWHMz}}=0.44 \lambda, \mathrm{DOFz}=1.73 \lambda$
$h=\lambda$
(b)

$\mathrm{FWHMz}=0.44 \lambda, \mathrm{DOFz}=1.92 \lambda$
(g)

$\mathrm{FWHMz}=0.49 \lambda, \mathrm{DOFz}=2.95 \lambda$
$\mathrm{h}=2 \lambda$
(c)

$\mathrm{FWHMz}=0.47 \lambda, \mathrm{DOFz}=0.75 \lambda$
(h)

$\mathrm{FWHMz}=0.48 \lambda, \mathrm{DOFz}=3.3 \lambda$
$\mathrm{h}=3 \lambda$
(d)

$\mathrm{FWHMz}=0.45 \lambda, \mathrm{DOFz}=1.31 \lambda$
(i)

$h=4 \lambda$
(e)

$\mathrm{FWHMz}=0.46 \lambda, \mathrm{DOFz}=0.86 \lambda$
(j)

Conclusions:

- The diffraction of optical vortices with circular polarization with different widths on silicon ring gratings and diffractive axicons by the finite difference time domain method were simulated.
- The heights of individual grating rings were varied.
- The smallest focal spot size was obtained for a silicon diffractive axicon at a relief height $\mathbf{h}=\mathbf{2 \lambda}$ for a laser beam with $\boldsymbol{\sigma}=$ $5 \mu \mathrm{~m}$ ($\mathrm{FWHM}=0.38 \lambda, \mathrm{FWHMz}=0.37 \lambda$), which is better than the action of a diffractive axicon with a height $h=0.2 \lambda$ (FWHM $=0.5 \lambda$, FWHMz $=0.44 \lambda$) by 24%.
- The results of numerical simulation for ring gratings with different heights $\boldsymbol{h}_{\boldsymbol{i}}$ (increase in center height from λ to 3λ) showed that, in the general case, an increase in height leads to the formation of a maximum inside the element.
- The largest light needle length was obtained for silicon ring gratings (laser beam width $\sigma=7.3 \mu \mathrm{~m}$) at a height $h_{2}=3 \lambda$ and $h_{1}=0.2 \lambda(D O F=4.65 \lambda)$, which is 83.8% longer than the light needle of a diffractive axicon with a height $h=0.2 \lambda$.

Acknowledgements:

This research was funded by the Ministry of Science and Higher Education, as part of the implementation of the State assignment (project no. 0777-2020-0017), by the Samara University Development Program for 2021-2030 as part of the Priority 2030 program with the support of the Government of the Samara Region, by the scholarship of the President of the Russian Federation SP-1173.2022.5 and was performed under the «ERA.Net RUS plus» program and funded by RFBR, project no. 20-52-76021.

SAMARA UNIVERSITY

THANK YOU

Web of Science ResearcherID: B-3532-2018 SCOPUS Author ID: 55546118200 ORCID: 0000-0003-2282-3895

E-mail: dmitrey.savelyev@yandex.ru

