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1. The model and its exact solution

We consider three identical two-level natural or artificial atoms (qubits) A,B and C. The
atoms B and C are trapped in a two single-mode infinite-Q cavities and resonantly interac-
ting with cavities fields through the m-photon transitions. The atom A is outside the cavities
and there is no interaction between the cavities fields and atom A.
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Figura 1: The schematic diagram of the model used in this paper for m = 1. Here ωcav is the
cavity mode frequency, ωa is frequency of transition between levels. The ground and excited
states of atoms are denoted by |−⟩ and |+⟩ respectively.

The interaction Hamiltonian of the system under consideration in the standard approximati-
ons has the following form

ĤI = ℏγ
(
σ̂+Bb̂

m + σ̂−B b̂
+m

)
+ ℏγ

(
σ̂+C ĉ

m + σ̂−C ĉ
+m)

, (1)

where σ̂+i = |+⟩ii⟨−| and σ̂−i = |−⟩ii⟨+| are the rasing and the lowering operators in the
i-th qubit (i = B,C), b̂+(ĉ+) and b̂(ĉ) are the creation and annihilation operators of the cavity
photons nB(nC), γ is the qubit-field coupling, m is the photon multiple of transitions.
As the initial state of the resonators field, we choose a thermal state with a density matrix of
the form:

ΞFnB
(0) =

∑
nB

pnB|nB⟩⟨nB|,ΞFnC
(0) =

∑
nC

pnC|nC⟩⟨nC|. (2)

There are weight coefficients

pnB =
n̄nB

B

(n̄B + 1)nB+1
, pnC =

n̄nC

C

(n̄C + 1)nC+1
; n̄B(C) = (exp[ℏωcav/kTB(C)]− 1)−1

the average number of photons of the resonator, TB(C) is the cavities temperature.
Let the initial states of qubits be the W-type genuine entangled states such as

|W1(0)⟩ABC = x2|+,+,−⟩ + y2|+,−,+⟩ + z2|−,+,+⟩, (3)

|W2(0)⟩ABC = x1|−,−,+⟩ + y1|−,+,−⟩ + z1|+,−,−⟩, (4)
with |x1|2 + |y1|2 + |z1|2 = 1, |x2|2 + |y2|2 + |z2|2 = 1.
We derived the solutions of the quantum Liouville equation for the initial states of qubits
(3)-(4) and the thermal field of resonators (2) in the model (1):

iℏ
∂ΞABCFnB

FnC

∂t
=
[
ĤI ,ΞABCFnB

FnC

]
. (5)

Here ΞABCFnB
FnC

is a density matrix including three qubits and two resonator field modes.

2. Calculation of the entanglement criterion

To calculate the various known criteria for the entanglement of three-qubit systems, we will
need to calculate the reduced density matrices of a system of two and three qubits. To obtain
a three - qubit density matrix ΞABC(t), it is enough to calculate the trace of the density matrix
of the entire system (5) from the variable fields of the resonator

ΞABC(t) = TrFnB
TrFnC

ΞABCFnB
FnC

. (6)

To calculate the two-qubit density matrix, it will be necessary to average the three-qubit den-
sity matrix (6) over the variables of the third qubit, i.e.

Ξij(t) = TrkΞABC(t)(i, j, k = A,B,C; i ̸= j, j ̸= k, i ̸= k). (7)

When studying the entanglement of qubits in the considered model for genuine entangled
W-type states, we will use the criterion of negativity of qubit pairs as a quantitative criterion
of entanglement. We define negativity for qubits i and j in a standard way:

εij = −2
∑
k

(λij)
−
k , (8)

where λij are the negative eigenvalues of a reduced two-qubit density matrix (7) partially
transposed over variables of one qubit ΞTij(t), which has the following form for states (3)-(4):

ΞTij(t) =


Ξ
ij
11 0 0 Ξ

ij
32

0 Ξ
ij
22 0 0

0 0 Ξ
ij
33 0

Ξ
ij
23 0 0 Ξ

ij
44

 ,


|+i,+j⟩
|+i,−j⟩
|−i,+j⟩
|−i,−j⟩

←→

1
2
3
4

 . (9)

Then, given expression (9), the formula for the negativity criterion will be written as:

εij =

√
(Ξ

ij
44 − Ξ

ij
11)

2 + 4|Ξij23|2 − Ξ
ij
11 − Ξ

ij
44. (10)

3. Computer modeling and results

The results of computer modeling of the pairwise negativities for genuine entangled qubits
states (3)–(4) and thermal field (2) are shown in Figs. 2-3.
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Figura 2: The negativity εAB(AC)(γt) (a,b) and εBC(γt) (c,d) are plotted as a functions of
scaled time γt for the initial states (3)–(4) with x1,2 = y1,2 = z1,2 = 1/

√
3. The mean number

of thermal photons: n̄B = n̄C = 0.01 (black solid line), n̄B = n̄C = 0.5 (red dashed line),
n̄B = n̄C = 1 (blue dotted line). The photon multiple m = 1.
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Figura 3: The negativity εAB(AC)(γt) (a,b) and εBC(γt) (c,d) are plotted as a functions of
scaled time γt for the initial states (3)–(4) with x1,2 = y1,2 = z1,2 = 1/

√
3. The mean number

of thermal photons n̄B = n̄C = 0.5. The photon multiple m: m = 1 (black solid line), m = 2
(red dashed line), m = 4 (blue dotted line).

• An analysis of computer modeling of the pairwise negativities for genuine entangled qubits
states (3)–(4) and thermal field (2) are shown in figures 2-3 that with increasing thermal
noise intensity, the maximum amount of entanglement of both the pairs of qubits decreases
for any parameters model.

• For m-photon transitions the negativity vanishes at some discrete time moments. This im-
plies that there is ESD for the atoms A and B (or A and C) and B and C. The time of
ESD decreases with photon multiple growth, i.e. this can be controlled by the parameter
m. This is true for both genuine entangled states except for atoms B and C of the initial
state |W1(0)⟩ABC.

• The main difference between the two genuine entangled states |W1(0)⟩ABC (a,c) and
|W2(0)⟩ABC (b,d) is as follows. For a model with one-photon and many-photon transiti-
ons, the maximum degree of entanglement is greater for a genuine entangled state of the
form |W2(0)⟩ABC. Moreover, a comparison of the graphs shows that the time intervals
during which the effect of sudden death of entanglement occurs are significantly longer
for the state |W1(0)⟩ABC. Thus, we conclude that the initial genuinely entangled state is
|W2(0)⟩ABC is more resistant to the destructive effect of the thermal field.
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