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1. The model and its exact solution

We consider three identical two-level natural or artificial atoms (qubits) Q1, Q2 and Q3, which
are trapped in a one-mode resonator with infinite Q-factor and resonantly interact with the
resonator field through m-photon transitions. The configuration is shown in Fig. 1.

Figura 1: The schematic diagram of the model used in this paper for m = 1. Here Ω is the
cavity mode frequency, ωa is frequency of transition between levels. The ground and excited
states of atoms are denoted by |1⟩ and |2⟩ respectively.

The interaction Hamiltonian of the system under consideration in the standard approximati-
ons has the following form

ĤI = ℏγ
∑
i

(
σ̂−i â

+m + σ̂+i â
m) , (1)

where σ̂+i = |2⟩ii⟨1| and σ̂−i = |1⟩ii⟨2| are the rasing and the lowering operators in the i-th
qubit (i = 1, 2, 3), â+ and â are the creation and annihilation operators, γ is the qubit-field
coupling, m is the photon multiple of transitions.
As the initial state of the resonator field, we choose a thermal state with a density matrix of
the form:

ΞFn(0) =
∑
n

pn|n⟩⟨n|. (2)

There are weight coefficients

pn =
n̄n

(n̄ + 1)n+1
; n̄ = (exp[ℏΩ/kT ]− 1)−1

the average number of photons of the resonator, T is the cavitiy temperature.
As the initial states of the qubits, we choose the following

|ψ1(0)⟩Q1Q2Q3
= |2, 2, 1⟩, (3)

|ψ2(0)⟩Q1Q2Q3
= cosα|1, 2, 1⟩ + sinα|1, 1, 2⟩, (4)

|W1(0)⟩Q1Q2Q3
= cos θ|2, 2, 1⟩ + sin θ sinφ|2, 1, 2⟩ + sin θ cosφ|1, 2, 2⟩, (5)

|W2(0)⟩Q1Q2Q3
= cos θ|1, 1, 2⟩ + sin θ sinφ|1, 2, 1⟩ + sin θ cosφ|2, 1, 1⟩, (6)

where α, θ and φ is parameters that determine the initial degree of entanglement.
We derived the solutions of the quantum Liouville equation for the initial states of qubits
(3)-(6) and the thermal field of resonators (2) in the model (1):

iℏ
∂ΞQ1Q2Q3Fn

∂t
=
[
ĤI ,ΞQ1Q2Q3Fn

]
. (7)

Here ΞQ1Q2Q3Fn is a density matrix including three qubits and resonator field mode.

2. Calculation of the entanglement criterion

To calculate the various known criteria for the entanglement of three-qubit systems, we will
need to calculate the reduced density matrices of a system of two and three qubits. To obtain
a three - qubit density matrix ΞQ1Q2Q3

(t), it is enough to calculate the trace of the density
matrix of the entire system (7) from the variable fields of the resonator

ΞQ1Q2Q3
(t) = TrFnΞQ1Q2Q3Fn. (8)

To calculate the two-qubit density matrix, it will be necessary to average the three-qubit den-
sity matrix (8) over the variables of the third qubit, i.e.

ΞQiQj
(t) = TrQk

ΞQ1Q2Q3
(t)(i, j, k = 1, 2, 3; i ̸= j, j ̸= k, i ̸= k). (9)

When studying the entanglement of qubits in the considered model for initial states (3)-(6),
we will use the criterion of negativity of qubit pairs as a quantitative criterion of entanglement.
We define negativity for qubits Qi and Qj in a standard way:

εij = −2
∑
k

(λij)
−
k , (10)

where λij are the negative eigenvalues of a reduced two-qubit density matrix (9) partially
transposed over variables of one qubit ΞTQiQj

(t), which has the following form for states (3)-
(6):

ΞTQiQj
(t) =


Ξ
ij
11 0 0 Ξ

ij
32

0 Ξ
ij
22 0 0

0 0 Ξ
ij
33 0

Ξ
ij
23 0 0 Ξ

ij
44

 ,


|+i,+j⟩
|+i,−j⟩
|−i,+j⟩
|−i,−j⟩

←→

1
2
3
4

 . (11)

Then, given expression (11), the formula for the negativity criterion (10) will be written as:

εij =

√
(Ξ
ij
44 − Ξ

ij
11)

2 + 4|Ξij23|2 − Ξ
ij
11 − Ξ

ij
44. (12)

3. Computer modeling and results

The results of computer modeling of the pairwise negativities for initial qubits states (3)–(6)
and thermal field (2) are shown in Figs. 2-4.
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Figura 2: The negativity ε12(γt) (a) and ε13(γt) (b) are plotted as a functions of scaled time
γt for the initial state (3). The mean number of thermal photons: n̄ = 1. The photon multiple:
m = 1 (black solid line), m = 2 (green dashed line), m = 4 (red dotted line).
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Figura 3: The negativity ε12(γt) (a) and ε23(γt) (b) are plotted as a functions of scaled time
γt for the initial states (4) with α = π/4. The mean number of thermal photons n̄ = 1. The
photon multiple m: m = 1 (black solid line), m = 2 (green dashed line), m = 4 (red dotted
line).
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Figura 4: The negativity ε12(γt) are plotted as a functions of scaled time γt for the initial state
|W1(0)⟩ABC (a) and for the initial state |W2(0)⟩ABC (b) with θ = Arccos[1/

√
3], φ = π/4. The

mean number of thermal photons n̄ = 1. The photon multiple m: m = 1 (black solid line),
m = 2 (green dashed line), m = 4 (red dotted line).

• The analysis of computer modeling of the negativity criterion for the initial states of qu-
bits (3)–(6) and the thermal field (2) obtained as a result of computer modeling shows in
Figures 2-4 that with an increase in the multiples parameter of photon transitions m, the
maximum degree of entanglement.

• For m-photon transitions, the negativity vanishes at some discrete time moments. This
means that there is an sudden death of entanglement. The time of sudden death of entan-
glement decreases with an increase in the photon transition multiples parameter, i.e. this
can be controlled using the m parameter. Moreover, for many-photon processes with large
m the phenomenon of sudden death of entanglement can be eliminated (see Figure 4 (a)).
Thus, for large values of photon transition multiples the oscillation of negativity decreases
and we obtain the long-lived genuine entangled W-states even for sufficiently intense fields.
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