SARATOV AUTUMN MEETING XXVII

25–29 September 2023, Saratov, Russia

XI Symposium on Optics and Biophotonics

Nanobiophotonics XIX

Invited Lecture

Introduction to metamaterials with an outlook towards biological applications

Mikhail Lapine 1,2,3

¹ ITMO University, Saint Petersburg, Russia

² University of Technology Sydney, Australia

³ Qingdao Innovation Centre of Harbin Engineering University, China

Abstract:

For many, metamaterials is still a new topic, and in any case there are quite a few peculiarities, which I will discuss and summarise conceptually. At the same time, research on metamaterials has triggered and inspired a number of new highlights across a wide range of related research directions. One of the specific examples I will discuss, has been inspired by the growing importance of all-dielectric metamaterials, which prompts for dielectric nanoparticles. For example, current mass-production of silicon nanoparticles yields a great dispersion of sizes, so the output must be sorted. We have proposed an all-optical way to sort dielectric nanoparticles according to their resonances, with a method to produce an angular spectrum of sizes with an easy distinction between sizes differing by 10%. The outcomes of this research might be relevant for nanoparticle manipulation also with medical applications in mind. I will also address some recent advances in nanofabrication, whereby direct laser writing procedures have been developed for super-fast production of plasmonic or dielectric arrays with highly controllable shape of structural features and steady periodicity. Once again, such structures could be of interest for biomedical applications. Finally, I will also mention metamaterials application for improving magnetic resonance imaging, whereby increased spatial resolution and/or reduction in acquisition times is possible.

Acknowledgement:

Research on the discrete metamaterials for imaging applications was supported by the Russian Science Foundation (grant no. 22-11-00153).