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1. Introduction 

In recent papers [1, 2] it has been shown that the successful proof of the 

Riemann hypothesis (RH) [3] is associated with overcoming the so-called Turing 

barrier. There is nothing unexpected in this, since this is not the first example 

demonstrating the insufficient power of traditional, Turing methods of calculations 

and proofs. It was previously shown that the proof of Hilbert's tenth problem, first 

obtained by Yu. Mathiasevich [4], also requires going beyond the Turing barrier 

[5].  

This work is devoted to clarifying some aspects of the proof of RH that af-

fect other provisions of modern science. The use of a relativistic Turing machine 

(MT) as a proof tool allows us to identify some features of the direction known as 

hypercomputing, or rather its part associated with the so-called bifurcative MT [6] 

and also to identify the connection of the problem under consideration with ques-

tions traditional for relativistic cosmology, for example, black hole physics..  

2. Singular structure of Malament-Hogarth spaces (M-H) 
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The concept of M-H spaces as a relativistic space allowing hypercomputing 

was first introduced in [7]. The peculiarity of its structure is the presence of singu-

larities S of special type, which can be briefly described as follows: “If an object 

follows a trajectory that falls into the singularity, its journey takes forever as meas-

ured by a clock moving with the object, but external observers perceive it to have 

taken only a finite amount of time to complete its journey into S.”[8]. 

The results obtained in [3] allow us to clarify the properties of the M-H 

spaces associated with their singular structure, which determines their similarity to 

the event space in the vicinity of the so-called black holes [9]. First of all, this con-

cerns the need to overcome the so-called event horizon, which requires stitching 

solutions of the relativistic equations used in the regions above and below the hori-

zon. In the relativistic theory of black holes, this is achieved, for example, by using 

the so-called Finkelstein transform [9] or their variants and generalizations. The 

result is the construction of a complete map of events in the vicinity of the singu-

larity.   

However, as shown in [10], these methods implicitly use the assumption of 

the stability of the electromagnetic vacuum (EV) under the event horizon (which is 

essential for the existence of photons and therefore the signal exchange), which, as 

shown in [11], does not correspond to reality. In [3, 10], an alternative variant of 

crosslinking solutions above and below the horizon is used, based on the fact that, 

in accordance with the instability of EV under the horizon and the impossibility of 

propagation of signals – electromagnetic waves in this area, time stops in it, or ra-

ther, the concept of time itself is absent. This result is important not only for study-

ing the properties of M-H spaces used for hypercomputing, but also for black hole 

physics, first of all, and, in a broader sense, for cosmology in general, which wide-

ly uses the black hole model for its constructions. 

3. Discussion 

First of all, let's deal with the formal-mathematical side of the question. The 

stitching of solutions discussed above now occurs between regions of different di-
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mensions – 2-dimensional (radial coordinate, time) above the event horizon and 1-

dimensional (coordinate only) below it. This procedure can be performed due to 

the properties of real numbers, allowing, for example, to display the inside of a 

square with a side of unit length on its side (Kantor, 1874. For problems with mu-

tual unambiguity and continuity of the display, see [12]).     

Let's return to the discussion of the physical side of the issue. The notion of 

the absence (concept) of time under the horizon is not something unexpected and 

new for modern physics and, moreover, naturally appears in the physics of black 

holes if all their applications are consistently considered and coordinated.  Indeed, 

cosmologists have repeatedly stated that there is no time before the Big Bang. 

There is also an analogy between the Big Bang and the so-called white hole, a so-

lution associated with a black hole by the operation of time reversal. Therefore, 

there is no time in the future of a black hole, just as there is no time in the past of a 

white hole.  

 

4. Conclusion 

This work will allow us to draw attention to the connection between the theory of 

hypercomputing and some problems of modern physics, in particular, the theory of 

black holes. The consideration is based on the proof of the Riemann hypothesis us-

ing a relativistic Turing machine. Solving Einstein's equations describing the dy-

namics of a relativistic Turing machine faces problems typical for the study of 

black holes in relativistic cosmology. The Malament-Hogarth space in which the 

action of the Turing machine takes place has an event horizon at the boundary of 

which partial solutions of relativistic equations of motion have to be stitched to-

gether. A successful proof of the Riemann hypothesis is possible if we assume that 

there is no the conception of coordinate time under the event horizon. These con-

siderations may have great implications for relativistic cosmology as well. 
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It must be noted that above consideration concerns the blackhole physics that 

works only in a classical scenario. In a quantum scenario the blackhole properties 

could drastically change, see for example the fuzzball approach [13]   and the “hy-

drogenatom” approach [14].  
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