Polarization Resolved Second Harmonic Generation (SHG) Microscopy for investigating Gamma-irradiated Starch Granules

Indira Govindaraju¹, Ishita Chakraborty¹, Sindhoora Kaniyala Melanthota¹, Guan-Yu Zhuo^{2,3}, Sib Sankar Mal⁴, Bhaswati Sarmah⁵, Vishwa Jyoti Baruah⁶, Krishna Kishore Mahato¹, Nirmal Mazumder^{1,*}

¹Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India

²Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan

³Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan

⁴Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, India-575025

⁵Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785001, India

⁶Centre for Biotechnology & Bioinformatics, Dibrugarh University, Assam-786004, India

Abstract: Starch is one of the most abundantly found carbohydrates in cereals, roots, legumes, and fruits and is located in the amyloplasts of plants. The amorphous amylose and crystalline amylopectin regions in starch granules are susceptible to certain physical modifications, such as gamma irradiation. P-SHG microscopy in conjunction with SHG-circular dichroism was used to assess the 3D molecular order and inherent chirality of starch granules and their reaction to different dosages of gamma irradiation. The results showed that changes in the structure and orientation of long-chain amylopectin were supported by the decrease in the SHG anisotropy factor and the $\chi 22/\chi 16$ ratio.

Keywords-Starch, Second harmonic generation, Polarization