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Abstract—We describe an extended version of the detrended
cross-correlation analysis which is useful for studying time-
varying dynamics of complex systems producing inhomogeneous
datasets. The method computes two independent measures that
quantify the detrended covariance and the impact of nonsta-
tionarity, respectively. We apply this approach to characterize
entrainment phenomena in the chaotic dynamics of two coupled
Lorenz models with an additional trend in the datasets under
study.

Index Terms—cross-correlations, fluctuation analysis, scaling,
nonstationarity

I. INTRODUCTION

Cross-correlations typically appear in the behavior of cou-

pled systems. Their characterization in terms of the classical

cross-correlation function is restricted in the case of time-

varying dynamics and nonstationary processes. Moreover, this

function decreases for random processes, approaching zero

with growing time delay, and the latter limits a reliable

assessment of its features in this area. In particular, the char-

acterization of long-range correlations becomes questionable.

A way for providing a more authentic description of such

correlations is based on the detrended fluctuation analysis

(DFA) [1], [2], which is used in various research fields [3]–[5].

In addition to its original version, a modification was proposed

for studying two nonstationary processes, called detrended

cross-correlation analysis (DCCA) [6]. The given method is

well adapted for the case of a rather homogeneous structure

of the signals under study and comparable fluctuations from

the local trend for different parts of data. This circumstance

enables computing the averaged RMS fluctuations throughout

the whole signals to estimate the global quantity (scaling

exponent) describing long-range correlations within DFA (or

cross-correlations for DCCA). If RMS fluctuations for some

segments of the signal profile strongly outperform those for

other parts of the data, then the estimation of the scaling

exponents can result in misinterpretations of the correlation

features. To take such circumstance into account, an extended

DFA was proposed and applied to various types of signals

[7], [8]. This approach introduces an additional scaling ex-

ponent which accounts for data inhomogeneity. For rather
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homogeneous data sets, the extended DFA does not enable

obtaining new information and advantages over the standard

DFA. But if there are clear inhomogeneities in the data

sets under study, such new information will be associated

with the impact of nonstationarity. We have also proposed

a modified version for the case of two nonstationary signals,

called extended detrended cross-correlation analysis (EDCCA)

[9]. This modification computes two quantities associated with

the detrended covariance and nonstationarity effects. Here,

some features of EDCCA are described and illustrated using

simulated datasets.

II. METHODS

Detrended fluctuation analysis is a way of quantifying long-

range power-law correlations in nonstationary signals. This

approach includes a construction of the profile of the signal

{xi}, i=1, . . . , N

yk =

k
∑

i=1

xi, (1)

that is further divided into parts of equal length n. The local

trend zk is computed within each part due to the least-squares

algorithm. Standard deviations of the profile from the local

trend are used to determine the scaling exponent α [2]

FDFA(n) =

√

√

√

√

1

N

N
∑

k=1

[yk − zk]2 ∼ nα. (2)

The extended version of DFA computes the difference

between the maximum and minimum local standard deviation

[7]

dFEDFA(n) = max [Floc(n)]−min [Floc(n)] . (3)

In order to analyze two time series {xi} and {x̃i},

i=1, . . . , N , both profiles are constructed

yk =

k
∑

i=1

xi, ỹk =

k
∑

i=1

x̃i (4)

and divided into segments. To increase their number, over-

lapping segments of n − 1 values are considered [6] with

computing the local linear trends zk and z̃k within each part



of the data. The detrended cross-correlation is computed for

individual segments

f2
DCCA(n, i) =

1

n− 1

i+n
∑

k=i

(yk − zk)(ỹk − z̃k) (5)

and the averaging procedure is carried out

F 2
DCCA(n) =

1

N − n

N−n
∑

i=1

f2
DCCA(n, i). (6)

The power-law dependence

FDCCA(n) ∼ nλ. (7)

enables computing the scaling exponent λ [6].

An extended DCCA [9] involves computations of differ-

ences between the extremal values of local standard deviations

dF (n) = max [Floc(n)]−min [Floc(n)] ,

dF̃ (n) = max
[

F̃loc(n)
]

−min
[

F̃loc(n)
]

, (8)

and estimating a measure

dFEDCCA(n) =

√

dF (n) ∗ dF̃ (n) ∼ nµ. (9)

which often shows a power-law behavior quantified by the

scaling exponent µ. A more stable approach deals with the

standard deviations of Floc

dFEDCCA(n) =

√

σ(Floc(n)) ∗ σ(F̃loc(n)) ∼ nµ, (10)

since effects of artifacts will be reduced, if they still remain

in datasets after the preliminary filtering procedures.

Datasets for cross-correlation analysis were selected from

the dynamics of two interacted Lorenz models

dx1,2

dt
= s(y1,2 − x1,2) + γ(x2,1 − x1,2),

dy1,2

dt
= r1,2x1,2 − x1,2z1,2 − y1,2, (11)

dz1,2

dt
= x1,2y1,2 − z1,2b,

with the parameters s=10, r1=28.8, r2=28, b=8/3, and rep-

resented sequences of return times into the Poincaré sections

x2
1 + y21=30 and x2

2 + y22=30. To account for nonstationarity,

a trend was added to both sequences, which was selected as

1/4 period of the cosine function.

III. RESULTS

Cross-correlation analysis of two sequences of return times

associated with each Lorenz model enables separation between

synchronous and asynchronous oscillations. The presence of

trends makes the analysis more complicated because this

nonstationarity affects estimations of the scaling exponents.

However, such complication is mainly associated with the

area of long-range correlations, where the estimated scaling

exponents strongly outperform their expected values. When

the range of scales decreases, effects of nonstationarity be-

come weaker (e.g., for lg n<2.3), and distinctions between

synchronous and asynchronous dynamics become well pro-

nounced. In this range of scales, data analysis can be done

without trend removal procedures. When larger scales should

be considered, the preliminary filtering by a high-pass filter

is required. The scaling exponent µ is more sensitive to

this procedure according to its definition. Aiming to quantify

effects of synchronization in terms of the scaling exponents,

the region lg n<2.2 was chosen.
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Fig. 1. Scaling exponent λ depending on the coupling strength
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Fig. 2. Scaling exponent µ depending on the coupling strength

Figures 1 and 2 show changes in λ and µ caused by

adjustment phenomenon when the coupling strength increases.

Thus, for γ>6, both Lorenz models demonstrate synchronous

chaotic dynamics, and further changes of γ do not affect

the scaling exponents. The distinctions between asynchronous

(e.g., γ=1.5) and synchronous (γ>6) oscillations are better

quantified by µ-exponent which shows stronger changes due

to the entrainment phenomenon. Note that these results are

rather stable in the case of additive noise.

IV. CONCLUSION

Because nonstationarity can strongly affect the results of

signal processing, approaches adapted for the analysis of time-

varying dynamics become highly important in many areas of

science, where real-world processes are analyzed. In this study

we consider an approach for cross-correlation analysis which

modifies the earlier proposed DCCA-method. This approach

evaluates two scaling exponents, associated both with the



original DCCA and impact of nonstationarity. The second

exponent is non-informative for rather stationary processes and

its evaluation is carried out only for inhomogeneous datasets.

This approach was applied to quantify chaotic synchronization

in the dynamics of two interacting Lorenz models with an

additional nonstationarity. In particular, we have shown that

the introduced scaling exponent µ is able to clearly quantify

the entrainment phenomena, although it has a much wider field

of possible applications in experimental studies.
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