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Abstract Nowadays, the problem of forecasting complex signals is significant and has many applications in real life. One of such applications is the prediction 
of neurophysiological signals, like EEG. Such signals are macroscopic signals of a group of neurons, and the connections between them adapt in time. Here, 
we investigate the possibility of forecasting the dynamics of the modulated adaptive network, which topology changes in time, using Reservoir Computing 
(RC). We show that the dynamics of the signal is chaotic, and RC cannot predict it, but reconstruction of the phase space by adding the delays improves the 
quality of the signal's prediction.

Fig. 2. (a) Schematic presentation of the topology of 100 Kuramoto phase 
oscillators network with the adaptation of the couplings. (b) The 
macroscopic signal obtained from the Kuramoto network by averaging the 
dynamics of all network's elements. One part of the signal is used in the 
training process, another one - in the predicting process. (c) Fourier and (d) 
wavelet spectra of the considered macroscopic signal. 

Fig. 4. (a) The maximal correlation rmax between the actual and predicted 
macroscopic signals during 25 (black) and 125 (red) Lyapunov times TΛ1 
versus the number of the delayed coordinates Nd. (b) The dependence of 
the time interval t0 during which the correlation r > 0.8 on the number of 
delay coordinates Nd. T

Λ1 = 1.25 s.

Conclusions

-  We investigated the capability of reservoir computing to predict the 
macroscopic signal generated by the adaptive network. Using Lyapunov 
analysis, we confirmed the chaotic nature of the generated macroscopic 
signal.
-  We demonstrated that the reservoir trained on the raw macroscopic 
signal failed to predict it. To improve the prediction quality, we reconstructed 
the phase space by adding the delayed signals. Using these delayed 
signals as the reservoir input increased the accuracy of the prediction.
-  We found that the correlation between the original and the predicted 
signal peaked for two delays and remained unchanged with a further 
increase in the delays.
-  We found that the optimal number of delays depended on the prediction 
horizon: the long-term prediction required fewer input signals and 
vice-versa. The potential reason is that increasing the number of delays 
has a positive and negative impact: more delays give more information 
about the macroscopic signal to the reservoir but contribute to a faster 
increase in error during the iterative process.

Fig. 5. (a) Time dependencies of (a) the maximal correlation rmax and (b) 
the normalayzed error ε = p/(Nd + 1)1/2  between the actual and predicted 
macroscopic signals and among all the considered parameters (D,R,σin) for 
different number of delayed coordinates Nd. (c) The number of delay 
coordinates Nd for which correlation in Fig. (a) is maximal. (d) The number
of delay coordinates Nd for which ε = p/(Nd + 1)1/2 in Fig. (b) is minimal.
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Parameters:
Reservoir size N
Spectral radius R
Node degree D
Input scaling σinput

Fig. 3. (a,c) The state prediction (red) of the reservoir and the actual 
trajectory (black) of the Kuramoto network and (b,d) the corresponding 
amplitude spectra for 2 cases: (a,b) when we use only 1 original signal as 
the input one and (c,d) when add 2 delayed signals.

Fig. 1. (a) Schematic presentation of the RC network in the training mode 
and (b) predicting (testing) mode. The number of input signals is equal to 
(Nd + 1), where Nd is the number of the delay coordinates.
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