

Reduced atomic density matrix for initial atomic states (1) or (2)

$$\hat{\rho}_{AB}(t) = [Tr_F \rho(t)] = \begin{pmatrix} U(t) & 0 & 0 & 0 \\ 0 & W(t) & H(t) & 0 \\ 0 & H^*(t) & V(t) & 0 \\ 0 & 0 & 0 & R(t) \end{pmatrix}$$

Matrix elements for initial atomic state (1)

$$U = \sum_{n=0}^{\infty} p_n |C_{41,n}(t)|^2, \quad V = \sum_{n=0}^{\infty} p_n |C_{21,n}(t)|^2, \quad W = \sum_{n=1}^{\infty} p_n |C_{31,n-1}(t)|^2,$$
$$\rho_{23} = \sum_{n=1}^{\infty} p_n C_{21,n-1}(t) C_{31,n-1}(t)^*.$$

The negativity

$$\varepsilon = -2\sum_{i}\mu_{i}^{-}.$$

Here μ_i is the eigenvalues of the partial transpose matrix

Coherence-enhanced entanglement between isolated atom and Jaynes-Cummings atom

Ali Othman, E. K. Bashkirov **Samara National Research University**

$$\hbar J(\hat{\sigma}_{A}^{+}\hat{\sigma}_{B}^{-}+\hat{\sigma}_{B}^{+}\hat{\sigma}_{A}^{-}),$$

$$[t_B T] - 1 \Big)^{-1},$$

$$\langle \Psi_{in}(t)\rangle\langle \Psi_{in}(t)|,$$

$$+1\rangle + C_{i4n} |+,+,n\rangle$$

Figure 1. The negativity as a function of a scaled time gt for initial atomic state $|+,-\rangle$ (a) (the detuning $\delta = 5$ (solid), $\delta = 10$ (dashed) and $\delta = 50$ (dotted)) and coherent initial atomic state (2) with $\theta_1 = \pi/4$, $\theta_2 = -\pi/4$ (b) (the detuning $\delta = 10$ (solid), $\delta = 50$ (dashed) and $\delta = 100$ (dotted)). The strength of dipole interaction $\alpha = 0.1$. The mean photon number $\bar{n} = 20$.

Figure 3. The negativity as a function of a scaled time gt for initial atomic states: $|+,-\rangle$ (a) (the dipole-dipole strength $\alpha = 0.1$ and the detuning $\delta = 5$ (solid), $\delta = 10$ (dashed) and $\delta = 50$ (dotted)) and coherent initial atomic state (2) with $\theta_1 = \pi/4, \theta_2 = -\pi/4$ (b) (the detuning $\delta = 10$ and the strength of dipole interaction $\alpha = 0.5$ (solid) and $\alpha = 5$ (dashed)). The mean photon number $\bar{n} = 10$.

$$\delta = \Delta / g, \chi = X$$

Simulations

(b)

 $/g, \alpha = J/g,$